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Abstract
Chemical potential is a property which involves the effect of interaction between
the components of a system, and it results from the whole system. In this paper,
we argue that for two particles which have interacted via their spins and are
now spatially separated, the so-called Bell’s locality condition implies that the
chemical potential of each particle is an individual property. Here is a point
where quantum statistical mechanics and the local hidden variable theories
are in conflict. Based on two distinct concepts of chemical potential, the two
theories predict two different patterns for the energy levels of a system of two
entangled particles. In this manner, we show how one can distinguish the
non-separable features of a two-particle system.

PACS numbers: 03.65.Ta, 03.65.Ud

1. Introduction

Bell’s theorem [1, 2] has a distinguished place in the contemporary research on the foundations
of physics. In general terms, this theorem concerns two spin 1

2 particles which were together
once and now have a space-like separation. According to this theorem, one cannot, using
a certain definition of locality, construct a hidden variable theory that can reproduce all the
predictions of quantum mechanics (QM). By a certain definition of locality, we mean ‘Bell’s
locality condition’ which in a local stochastic hidden variable (LSHV) theory is equivalent to
the statistical independence of the values of the spin components of the two particles. While
people agree that according to QM Bell’s locality condition cannot hold at a sub-quantum
level, there is no unanimous agreement on the scope of such non-locality [3]. Does it mean the
existence of superluminal communication between the two particles or does it imply that two
particles that have once interacted can never be considered to be independent of each other
(or being separable), even though there is no exchange of information between them? Here
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we are confronted with two quite distinct interpretations of Bell’s locality condition which are
usually referred to as ‘locality’ and ‘separability’ in the literature [4]. In a multi-component
system, the locality assumption means that for a given component, the value of an observable
does not depend on the measurements which are performed simultaneously on any other
spatially separated component. This is Einstein’s view of locality. In his view, however, the
separability criterion implies that each component in a spacetime region has its own intrinsic
physical state and that the entire physical state of a multi-component system is specified once
one has determined the intrinsic state of each component [5]. In Bell’s theorem, the two
notions seem to be indistinguishable [6]: the spin correlations are the properties of the whole
system, i.e. the correlations result from the entire singlet state, while the empirical verification
of them would be possible once the spin measurements are performed simultaneously on two
particles which have space-like separation.

There have been many attempts to give an interpretation of the context of Bell’s theorem
[7–9]. Here, we try to present a new perspective of this matter by explaining how it is possible
to identify the non-separable trait of Bell’s locality condition in a proposed experiment. Our
argument shows that the distinction between the notions of non-locality and non-separability
is actually realizable. Furthermore, our work gives a new insight into Bell’s theorem in a
broader sense in which the effective spin–spin interaction between any two particles with the
same spin can be considered as a special factor for describing the non-separable nature of
composite systems. The role of such interactions in understanding and formulation of the
chemistry of solutions and mixtures is an open problem.

In our paper, we consider a system of two spin 1
2 particles which have been interacted via

their spins in the past and then are spatially separated from each other. For such a system,
we do not consider the spin correlations, i.e. we suppose no spin measurements are made on
each individual particle. We introduce the idea of using the chemical potential as a classical
property, instead of using spin correlations which have a quantum mechanical origin. Then, we
carry out some simple quantum statistical mechanics (QSM) calculations for a singlet state to
show that Bell’s locality condition is equivalent to the assumption that those properties of each
particle which result from the whole system can effectively be taken as individual properties.
A physical consequence of this is that the energy pattern of the system can be obtained from
the energy states of the individual particles. This is an implication of the separability criterion
which is in conflict with what we get from QSM.

In section 2, we consider a method for producing pairs of entangled spin 1
2 particles in a

singlet state and we review the QSM calculations for an effective spin–spin Hamiltonian. In
section 3, we calculate the chemical potential of each particle in the quantum limit. We shall
argue that Bell’s locality condition is equivalent to the separability criterion when the whole
system is taken into account. The non-separable character of the system is recognizable through
a unique energy pattern which, in turn, can be identified by an appropriate spectroscopic
measurement. Finally, in the last section, we review the significance of our analysis.

2. QSM calculations for an effective spin–spin interaction

Suppose we produce an ensemble of systems, each system containing a pair of spin 1
2 particles

(e.g. two electrons). We send each pair of spin 1
2 particles towards an entangler which is

assumed to be a device in which the two particles interact via their spins and thereby the
entangled states are generated. After the interaction, we let the particles recede from each
other. We assume that the temperature of the ensemble is very low and the other experimental
conditions (if relevant) are so adjusted that the two emerging particles are in a singlet state.
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We represent the spin–spin interaction of a pair of particles of our ensemble by the
Hamiltonian

Hint = α →
σ

(1) · →
σ

(2) (1)

where →
σ

(i) represent Pauli spin matrices of the ith particle (i = 1, 2) and α is the exchange
coupling coefficient between the two spins →

σ
(1) and →

σ
(2) and here we assume it to be a

positive constant for a specific pair of spin 1
2 particles. Here, by →

σ
(1) · →

σ
(2) we mean

σ (1)
x σ (2)

x + σ (1)
y σ (2)

y + σ (1)
z σ (2)

z .
A particular realization of producing the singlet states which is relevant to our discussion

has been recently provided by using coupled quantum dot systems [10, 11]. Quantum dots
are small semiconductor structures which can host a single electron in a three-dimensional
confined region [12]. If two nearby single electrons in each quantum dot are being weakly
coupled (e.g. by tunnelling between the dots), a double-dot system will be produced which is
the result of a combined action of the Coulomb interaction and the Pauli exclusion principle. It
has been shown that at low temperatures (typically about 0.2 K) and in the absence of magnetic
fields, the ground state of a double-dot system is a spin singlet while the excited state is a
spin triplet. Each pair of the entangled electrons can be injected into two distinct leads (one
electron in each lead) and, then, the outgoing electrons are separated [13].

Considering the dynamics of the spins of two electrons which are confined in a double-
dot system, the real Hamiltonian of the system can be replaced by the effective Heisenberg
Hamiltonian (1), where α is equal to 1

4 of the difference between the triplet and the singlet
states. The order of magnitude of α is about 0.05 meV, which is a typical value for the
exchange energy between two electrons in a double-dot system [11].

In QSM, the density matrix of a coupled system, which is described by the Hamiltonian
(1), can be written as

ρ = e−αβ −→σ (1)·−→σ (2)

z
(2)

where β = 1
kT

, T is the temperature, k is the Boltzmann constant and z = Tr(e−βHint) denotes
the partition function of the two-particle system.

Using the properties of Pauli matrices, one can show that

e−αβσ
(1)
j σ

(2)
j = cosh(αβ) − σ

(1)
j σ

(2)
j sinh(αβ) (3)

where j = x, y, z; cosh(αβ) = eαβ + e−αβ

2 and sinh(αβ) = eαβ− e−αβ

2 .
Inserting (3) in (2), we obtain

e−αβ −→σ (1)· −→σ (2) =
∏

j=x,y,z

[
cosh(αβ) − σ

(1)

j σ
(2)

j sinh(αβ)
]
. (4)

Using the properties of Pauli matrices again, (4) reduces to

e−αβ −→σ (1)· −→σ (2) = 1
4 (e3αβ + 3 e−αβ)

(
1 − →

σ
(1) · →

σ
(2)Sαβ

)
(5)

where Sαβ = e2αβ − e−2αβ

e2αβ + 3 e−2αβ . The eigenstates of →
σ

(1) · →
σ

(2) consist of |�1〉 = |++〉, |�2〉 = |−−〉
and |�3〉 = 1√

2
[| + −〉 + | − +〉] with the eigenvalue +1 and |�4〉 = 1√

2
[| + −〉 − | − +〉] with

the eigenvalue −3. Here, | + +〉 indicates that the values of the z-components of both σ (1)
z and

σ (2)
z are +1, and a similar definition holds for the other cases.

Using a complete set of these eigenstates, we can calculate the partition function z:

z = Tr
(

e−αβ −→σ (1).−→σ (2)
)

= e3αβ + 3 e−αβ. (6)
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Thus, (2) is reduced to

ρ = 1
4

(
1 − →

σ
(1) · →

σ
(2)Sαβ

)
. (7)

At very low temperatures (T → 0 or β → ∞), we have limβ→∞ Sαβ = 1. This limit is
known as the quantum limit. According to QSM and in the quantum limit, we have

ρQM = 1
4

(
1 − →

σ
(1) · →

σ
(2)

)
. (8)

The states |�1〉, |�2〉 and |�3〉 are three eigenstates of ρQM with the eigenvalue
zero and |�4〉 is the singlet state with the eigenvalue +1. Thus ρQM can be written as
ρQM = |�0〉〈�0|, where |�0〉 = |�4〉, i.e. the singlet state. This can also be shown by writing
|+〉〈+| = 1

2 (1 + σz), |−〉〈−| = 1
2 (1 − σz), |+〉〈−| = 1

2 (σx + iσy) and |−〉〈+| = 1
2 (σx − iσy) and

substituting these in the |�0〉〈�0| expression.
Relation (8) shows that for a pair of spin 1

2 particles which have interacted through the
Hamiltonian (1), the spin state of the system in the quantum limit is described by a singlet
state. When these two spin 1

2 particles interact, we get two energy levels: one having a lower
energy −3α belonging to the singlet state; the other having a higher energy +α, belonging to
the triplet state. At very low temperatures, the lowest occupied energy state is the one having
the energy −3α and so the quantum state of the system is a pure singlet state. When no
perturbation is introduced, the system will remain in the singlet state. But, if the temperature
is raised the pure singlet state is lost. Similarly, once we measure a spin component of a
particle, there is going to be an interaction with an external field (e.g. a magnetic field in the
case of Stern–Gerlach apparatus). Then, the energy pattern of the system is changed and a
new pattern will be formed which is composed of the single-particle energy states.

3. QSM versus LSHV theories

Consider a canonical ensemble consisting of N identical distinguishable coupled systems,
e.g. N double quantum dot systems in a semiconductor heterostructure [12] which are
distinguishable because of their locations. The partition function of the canonical ensemble
is Z = zN , where z is the partition function of the two-particle system and is obtained from
(6). If we denote the number of particles 1 and 2 in the ensemble by N1 and N2, respectively,
then N = N1 + N2

2 . For this ensemble, the chemical potential of each particle resulting from the
spin interaction of each pair (which is a coupling process), under the condition of a definite
temperature, is equal to

µi = − 1

β

(
∂ ln Z

∂Ni

)
= − 1

2β
ln z (9)

where i = 1, 2. Using (6) and (9), we get

µ1 = µ2 = −3

2
α − 1

2β
ln(1 + 3 e−4αβ). (10)

In the limit β → ∞, the chemical potential reduces to − 3
2α. Chemical potential can be

defined for any species of particles in the pair, but it is not an individual property. From (9),
it is clear that the chemical potential of each particle can be calculated from the partition
function of the two-particle system, and here one cannot reduce z to the single-particle case.
In other words, the chemical potential for each particle is a property which involves the effect
of interaction and results from the whole system. From (10), it is clear that the effect of
interaction on the chemical potential enters through the parameter α and in the quantum limit,
it approaches the value − 3

2α. On the other hand, in the quantum limit, the canonical ensemble
reduces to a pure ensemble in which only the ground state is occupied. In this case, we
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have the maximum amount of order in the system and the entropy of each system, which
is S = −kTr(ρQM ln ρQM), is equal to zero. Thus, due to the existence of thermodynamic
equilibrium in the system, the chemical potential of the whole system, which is in the ground
state, is equal to the sum of single-particle chemical potentials in a coupling process, and we
have µ1 + µ2 = −3α.

Now, suppose that we have a sub-quantum level describable by some hidden variables,
in which the principle of separability is honoured. After the spin–spin interaction of the
two-particle system and when the two particles are spatially separated, we assume that the
joint probability for the spin of particle 1 along â

(
σ (1)

a

)
being r (r = ±1) and the spin of

particle 2 along b̂
(
σ

(2)
b

)
being q (q = ±1), is equal to

p(1,2)
r,q

(̂
a, b̂, λ(1)

r , λ(2)
q

) = p(1)
r

(̂
a, λ(1)

r

)
p(2)

q

(
b̂, λ(2)

q

)
(11)

where p(1)
r

(̂
a, λ(1)

r

)
and p(2)

q

(
b̂, λ(2)

q

)
are individual probabilities for particles 1 and 2,

respectively. Here, we are assuming that the spin state corresponding to σ (1)
a = +1 or −1(

σ
(2)

b = +1 or −1
)

for particle 1 (2) could be made to correspond to different collections of

hidden variables λ
(1)
+ or λ

(1)
−

(
λ

(2)
+ or λ

(2)
−

)
respectively, although in Bell’s theorem, they are

usually characterized by a unique set of hidden variables λ. Thus, with a broader attitude,
we consider relation (11) as a criterion for the so-called Bell’s locality condition in an LSHV
theory. In a canonical ensemble, the individual probabilities are equal to

p(1)
r

(̂
a, λ(1)

r

) = e−βε
(1)
r (̂a,λ

(1)
r )

z(1)
(12)

and

p(2)
q

(
b̂, λ(2)

q

) = e−βε
(2)
q (̂b,λ

(2)
q )

z(2)
. (13)

In (12), ε(1)
r

(̂
a, λ(1)

r

)
refers to two energy levels ε

(1)
+

(̂
a, λ

(1)
+

)
(corresponding to σ (1)

a = +1)

and ε
(1)
−

(̂
a, λ

(1)
−

)
(corresponding to σ (1)

a = −1). It is assumed that these levels split due to
the spin–spin interaction of the pair. Also, z(1) is the partition function of the particle (1)
and is equal to z(1) = e−βε

(1)
+ + e−βε

(1)
− . The same description holds for (13). In the canonical

ensemble, the chemical potential of the first particle is equal to

µ1 = − 1

β
ln z(1)

= ε(1)
+ − 1

β
ln

[
1 + e−β(ε

(1)
− −ε

(1)
+ )

]
. (14)

In the quantum limit, β → ∞, depending on whether ε
(1)
+ is lower or ε

(1)
− , µ1 becomes equal

to one of them. In this case, µ1 is numerically equal to the energy of the occupied ground
state. According to (10), in the limit β → ∞, this value must be equal to − 3

2α. Thus, the
spin energy level of the first particle, after the interaction with the second particle, splits into
two levels: − 3

2α and + 3
2α. But, these are the corresponding hidden variables that determine

which of these two levels belongs to ε
(1)
+ and which one belongs to ε

(1)
− . The same result holds

for the second particle. Thus, we have

z(1) = z(2) = e− 3
2 αβ + e+ 3

2 αβ . (15)

In relation (15) and consequently relations (12) and (13), the effect of interaction is
introduced through the parameter α. It is also important to note that the equation obtained for
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Figure 1. The pattern of the energy levels of the two-particle system (a) according to the LSHV
theory and (b) according to the QSM calculations.

z(1) and z(2) in (15) is independent of what was assumed about lambda in an LSHV theory, but
it is based on the crucial expressions of chemical potential in relations (10) and (14).

Here, we are dealing with two different concepts for µ1 and µ2. In the sub-quantum
level, Bell’s locality condition requires that the chemical potential of each particle to be an
individual property and that in the quantum limit, it represents the lowest occupied energy
state for the particle. On the other hand, QSM calculations show that for a system of two
entangled particles there are no individual energy levels in the limit β → ∞, and that µ1 and
µ2 do not represent the ground state energy of single particles.

According to Bell’s locality condition, the partition function of a canonical ensemble is
equal to

z = z(1)z(2) = e−3αβ + e+3αβ + 2. (16)

Thus, we are dealing with two different patterns for the energy levels. According to (16),
the system has three energy levels with the following characteristics:

• The ground state with an energy of −3α, where each particle has an energy of − 3
2α.

• The first excited level, involving two states of zero energy, where the first particle has an
energy of − 3

2α and the second particle has an energy of + 3
2α and vice versa.

• The second excited state with an energy equal to +3α, corresponding to the case where
each particle has an energy of + 3

2α (figure 1(a)).

The aforementioned description for the energy pattern of the system, which results from
different possible combinations of the single-particle energy levels, is an explicit result of the
separability condition. On the other hand, according to (6), the system has two energy levels:
the ground state with an energy of −3α, and the first excited level including three states of an
energy +α (figure 1(b)). This pattern cannot be deduced from the sums of individual energy
states.

In an LSHV theory, Bell’s locality condition implies the first pattern which in turn is a
consequence of the separability criterion, but QSM admits the second one. There is an obvious
difference in the physics of the problem. Now, suppose, e.g., that the two-particle system is in
the ground state (i.e. in the quantum level). Furthermore, suppose that a radiation of energy
+3α is incident on the system. In the first model, there is always a probability for the system
to be excited to the zero-energy level (i.e. one of the particles remains in the level − 3

2α and
the other one goes to the level + 3

2α), and then returns to the initial state by the emission of a
photon with the energy +3α. But this process does not take place in the second model, i.e.
there would be no change in the system. The spectroscopic study of the coupled quantum dot
systems has been cited in [11].
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4. Conclusion

We are concerned here with the concept of chemical potential. In a multi-component system,
the chemical potential attributed to each component is generally a property which results
from the whole system, i.e. it cannot be interpreted to represent an individual property of a
specific component of the system. But Bell’s locality condition implies that chemical potential
can be attributed to each component of the system as an individual property. Here, we use
chemical potential as a characteristic feature of the composite systems to demonstrate the
(non)separability notion.

Furthermore, after the pioneering work of Guggenheim for electrochemical processes in
1929 [14], it became clear that chemical potential is a quantity in which the interaction with
the field can also be included. Then, the formulation of chemical potential was extended to
include the potentials due to the interacting fields.

For two spin 1
2 particles that interact via their spins at low temperatures and then recede

from each other, the calculation of the chemical potential of a particle in a canonical ensemble
shows that once the system is described by a singlet state, the effect of the interaction remains
in the particles, even if they are spatially separated. Here, there is a common characteristic
for the two particles: they are constrained to a unique energy pattern. This is not due to
the exchange of information between the particles; rather, it is due to their past interaction
which implies the non-separable nature of a two-particle system. In the singlet state, the
energy pattern of the system is not reducible. It is a property of the whole system and in
the limit of low temperatures, the values of the chemical potential of single particles coincide
with none of the individual energy levels. On the other hand, Bell’s locality condition
requires that at the sub-quantum level, when no spin measurements are performed on each
particle, the energy pattern of the whole system can be obtained from the combination
of the energy levels of the individual particles. This is a consequence of the separability
assumption.

Thus, Bell’s theorem is not confined to the evaluation and the comparison of spin
correlations in the quantum and sub-quantum levels; rather, it can be used to distinguish
the non-separable nature of composite systems which in turn sheds new light on the physics
and the chemistry of complex systems, such as solutions and mixtures. Chemical potential is
a key property in this context.
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